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Evidence is given that Rényi entropies of macroscopic thermodynamic systems defined on the bases of
probabilities of microstates cannot be related to observables. The notion of observable is clarified.
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Recently Abe[1] and Jizba and Arimitsu[2] investigated
an issue that I raised in 1981[3]. In that paper I showed that
it is possible to find pairs of probability assignments that are
so close to each other that they cannot be distinguished by
any reasonable test and yet their Rényi entropies, with pa-
rametersaÞ1, may differ considerably. This result was used
to argue that, for macroscopic thermodynamic systems, these
entropies could not be related to observable quantities. Abe
extended the idea to other types of entropies, and Jizba and
Arimitsu criticized the arguments. On reading my old paper
again I noticed that it was extremely concise and some points
were formulated in an improper way. This may have led
modern authors to some wrong interpretations. Therefore I
shall begin the present investigation clarifying the corre-
sponding points.

The central point in Ref.[3] was not the question of
whether Rényi entropies were observable. In fact Rényi en-
tropies are not observable. Not even Shannon entropy is ob-
servable. An observable is a collection of experimental
yes-no questions about a system that forms a Boolean alge-
bra, together with a corresponding collection of Borel sets on
the real line. Observables can be represented by essentially
self-adjoint operators on Hilbert space that are independent
of the state of the physical system. Therefore clearlyI1srd
=−Trsr ln rd is not an observable. Shannon entropy and all
other Rényi entropies are state functionals—i.e., mappings
that map the set of states into the real numbers. It may seem
that the distinction between observables and state functionals
is a mere question of words. However, all understanding of
nature is based on language(mathematical and ordinary lan-
guage) and the improper use of words can quickly lead to
wrong results. For instance, we find in Ref.[2] (second page,
top of second column) “…. systems whose statistical fluctua-
tions in Gsxd would change too dramatically with a small
change in the state variablex.” Here Gsxd stands for a Rényi
entropy or Tsallis-Havrda-Charvat entropy or any other state
functional andx is the probability assignment. This is wrong.
Gsxd will not show any statistical fluctuations. A given
ensemble—i.e., a class of independent experiments defined
by some experimental procedure—is described by a prob-
ability assignmentx. Therefore, all members of the ensemble
correspond to the same valueGsxd. On the other hand, if one
measured an observable, different members of the ensemble
may give different results. This variation of experimental
outcomes among different members of an ensemble is called
statistical fluctuation. The instability of state functionals has
nothing to do with statistical fluctuations.

The central point of the investigation of Ref.[3] was the
question whether Rényi entropies could be related to observ-
ables of a thermodynamic system. Let us see what is meant
by “relate a state functional to an observable.” Let

Â,B̂, . . . ,Ĥ be macroscopic commeasurable observables used
for the thermodynamic description of a macroscopic system.
The total number of these observables may be large, but it is
supposed to be extremely small in comparison with the total
number N of microscopic degrees of freedom. Let
ua,b, . . . ,h, jl be a basis of common eigenstates, where
a,b, . . . ,h are the corresponding eigenvalues andj is an in-
dex of degeneracy. LetWa,b,. . .,h be the dimension of the com-
mon eigenspace with eigenvaluesa,b, . . . ,h. These degrees
of degeneracy are typically of the order ofMN, where M
stands for some large number. The Boltzmann entropy is
then defined as

Ŝ= o
a,b,. . .,h,j

ua,b, . . . ,h, jlln Wa,b,. . .,hka,b, . . . ,h, j u. s1d

This is an observable. The typical states discussed in thermo-
dynamics have the form

r = o
a,b,. . .,h,j

ua,b, . . . ,h, jl
Pa,b,. . .,h

Wa,b,. . .,h
ka,b, . . . ,h, j u. s2d

That means the probabilities of microstatesua,b, . . . ,h, jl are
constant within the common eigenspaces. The Shannon–von
Neumann entropy of such a kind of state is

I1srd = − Trsr ln rd = − o
a,b,. . .,h,j

Pa,b,. . .,h

Wa,b,. . .,h
ln

Pa,b,. . .,h

Wa,b,. . .,h

= − o
a,b,. . .,h

Pa,b,. . .,h ln
Pa,b,. . .,h

Wa,b,. . .,h

= o
a,b,. . .,h

Pa,b,. . .,h ln Wa,b,. . .,h

− o
a,b,. . .,h

Pa,b,. . .,h ln Pa,b,. . .,h. s3d

The second term is usually negligible as compared to the
first one. Therefore, the Shannon entropy is approximately
equal to the expectation value of the Boltzmann entropy.
In most cases the probability distributions of the macro-
scopic variables are sharply peaked around the expectation
values. In these cases one has the following relation of
Shannon entropy and observable Boltzmann entropy:The
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probability of observing an eigenvalue of entropy far away
from the Shannon value is extremely small. Note that this
kind of relation between state functional and observable nec-
essarily involves probabilities or expectation values. The is-
sue of Ref.[3] was the question of whether one could find

observablesÎa that might be related to the Rényi entropies
Ia=s1−ad−1lnfoispidag in a similar way.

Before investigating the question of instabilities of Rényi
entropies let us add one more remark on state functionals
and observables: Thermodynamic systems are special be-
cause of their large number of microscopic degrees of free-
dom. But apart from that they are nothing special. So if
Rényi entropies are state functionals and not observables,
this should be true for different systems too. So how can it be
that Rényi entropies are routinely measured in numerous
situations such as cryptography, chaotic dynamical systems,
earthquake analysis, etc.[2]? In fact, what is routinely being
measured is

Iasrd =
1

1 − a
lnSo

i

sr idaD , s4d

wherer i are relative frequencies. Relative frequencies can be
measured; probabilities cannot. A probabilityP of some
event is again a state functional(a linear one) and it can be
related to a relative frequencyR in Z repeated experiments
(with Z@1/P), very much the same way as Shannon entropy
can be related to Boltzmann entropy:The probability of find-
ing R far away from P is very small. Again this statement
is a probabilistic one. A probability is nothing but an opinion
(which may be based on objective facts by information
theoretic rules). We do not measure opinions in physics
laboratories. Relative frequencies and mean values can be
measured; probabilities and expectation values cannot be
measured. The pseudo “measurement” of Rényi entropies
by substituting probabilities by relative frequencies cannot
be performed in the case of Rényi entropies that are defined
on the bases of probabilities of microstates of thermo-
dynamic systems. The probabilities of individual microstates
pi are far too small to be related to relative frequencies. This
is also true for the case of Shannon entropy. Therefore it
is remarkable that Shannon entropy can be related to an ob-
servable.

Now let us address the question of the unstable behavior
of Rényi entropies. Jizba and Arimitsu[2] argue that it is not
enough to give one example of a pair of probability assign-
ments that are so close that no test can distinguish them and
whose Rényi entropies differ considerably in order to show
that Rényi entropies cannot be related to observables. Their
argument is correct. In fact, if the problem was limited to a
small number and a well known type of states and moreover
to states that were not of special interest, one could remedy
the problem easily by excluding the problematic cases. In
fact, Jizba and Arimitsu show that for large numbers of mi-
crostates the problematic sector is confined to a set of Bhat-
tacharyya measure zero. This fact is interesting in itself and
adds one more item to phenomena related to very large num-
bers. However, the small Bhattacharyya measure of the prob-
lematic cases may not be a valid argument to save the use-

fulness of Rényi entropies of thermodynamic systems. After
all we are not talking about a set of measure zero in phase
space, but about a measure in the space of probability assign-
ments. The exact significance of the Bhattacharyya measure
in statistical descriptions of thermodynamic systems has to
be given. We shall give evidence that in fact all interesting
initial states describing thermodynamic systems are exactly
of the problematic type.

It is not of much interest to investigate a system when it
already reached its final equilibrium. So let us study an initial
state with entropy less than lnn, wheren is the total number
of microstates. In any normal macroscopic experiment start-
ing from a nonequilibrium state means that the initial entropy
is smaller than lnn by some macroscopic amount—i.e., by
some number of the orderN. Furthermore, the initial mac-
rostatefaI ,bI , . . . ,hIg is usually known. Therefore, the typical
initial state is of the form

r = o
j

uaI,bI, . . .hI, jlpjkaI,bI, . . .hI, j u. s5d

The special characteristics of this kind of state are the fol-
lowing: (1) The number of occupied microstates is of the
orderMN and therefore usually any individual probabilitypj
is extremely small(of the order ofM−N). (2) The number of
empty microstates is larger than the number of occupied mi-

crostates by a huge factor, which is also of the order ofM̃N.
Essentially these two characteristics make this sort of state a
problem case. I shall not give the most general proof but
limit myself to the simplest, but most important, example,
which shows the general idea clearly. I shall assume thepj to
be constant:

r = o
j

uaI,bI, . . .hI, jl
1

WaI,bI,. . .hI

kaI,bI, . . .hI, j u. s6d

All Rényi entropies of this state have the same value, which
is the Boltzmann entropy of the macro-statefaI ,bI , . . . ,hIg:

Iasrd = SsaI,bI, . . .hId = ln WaI,bI,. . .hI
. s7d

Now, imagine that a friend of ours enters the laboratory and
criticizes our experiment. He claims our preparation of state

may in some cases result in the macro-statefā,b̄, . . . ,h̄g. His
density operator would be

r̃ = o
j

uaI,bI, . . . ,hI, jl
1 − d

WaI,bI,. . .,hI

kaI,bI, . . . ,hI, j u

+ o
j

uā,b̄, . . . ,h̄, jl
d

Wā,b̄,. . .,h̄
kā,b̄, . . . ,h̄, j u. s8d

Now, if the probabilityd is, say, 10−100, we will not be able
to convince our friend that our probability assignment is bet-
ter than his by showing experimental results. The number
10−100 is far too small to get sufficient statistics in 2
31010 years(age of the universe) even if we could perform
1020 experiments per second. However, 10−100 is astronomi-
cally huge in comparison with the probabilities of individual
microstates. The Rényi entropy of the friend’s probability
assignment is
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Iasr̃d =
1

1 − a
lnhs1 − ddasWaI,. . .,hI

d1−a + dasWā,b̄,. . .,h̄d1−aj

=
1

1 − a
lnHsWā,b̄,. . .,h̄d1−ada

3S1 +
s1 − dda

da

sWaI,. . .,hI
d1−a

sWā,b̄,. . .,h̄d1−aDJ
= ln Wā,b̄,. . .,h̄ +

a

1 − a
ln d

+
1

1 − a
ln S1 +

s1 − dda

da

sWaI,. . .,hI
d1−a

sWā,b̄,. . .,h̄d1−aD . s9d

The first term is of orderN. If u1−au@ uln du /N, the second
term is negligible as compared to the first one(for instance,
with N<1024 and d=10−100 our argument is restriction to
a values withu1−au@10−22). To estimate the third term we
now distinguish the following two cases:(1) If a.1, we

shall assume that our friend thought of a statefā,b̄, . . . ,h̄g
with smaller entropy than the main statefaI ,bI , . . . ,hIg. If

SsaI , . . . ,hId−Ssā, . . . ,h̄d is macroscopic(of the orderN),
the third term is clearly also negligible as compared to
the first one.(2) If a,1, we assume that the friend thought

of a state fā,b̄, . . . ,h̄g whose entropy is macroscopically
larger thanSsaI , . . . ,hId. Again the third term will be negli-
gible. So, in either case, the Rényi entropy of the friend’s
probability assignment would essentially be the entropy of

the irrelevant statefā,b̄, . . . ,h̄g, which is far away from our
value [Eq. (7)].

One may easily extend the idea to states that do not
have a large region of unoccupied microstates. For example,
one may think of a sharply peaked probability distribution
of Boltzmann entropies. Generally emptying the meaning-
less small tail of the distribution will give similar disasters.

The argument that the problematic sector of probability
assignments is limited to a set of measure zero would mean
that we have no chance to encounter such type of problem in
our daily work. The present counterexample shows that the
problematic behavior of Rényi entropies shows up for states
that are really used in common descriptions of thermody-
namic systems. Therefore, one may conclude that the Bhat-
tacharyya measure is not a relevant measure to judge the
unstable behavior of Rényi entropies. If this measure really
had significance, the situation of Rényi entropies of thermo-
dynamic systems would be even worse. Let us take a closer
look at the demonstration of Ref.[2], which shows that the
unstable sector is limited to a small measure. In order to
define the Bhattacharyya measure the authors associate a
vector j to a probability assignmentP=hp1, . . . ,pnj putting
ji =Îpi. The Bhattacharyya measure is then defined by the
ordinary (appropriately normalized) surface area on the unit
l2-sphere in thej-space. For the casea.1 Jizba and Arim-
itsu show that for«.0 and anyp with 1,p,a / sa−1d the
inequalities

iji2a ù Esij8i2ad exph− 2«fEsij8i2adgp−1j, s10d

iji2a ø Esij8i2adexph«fEsij8i2adgp−1j s11d

hold for almost allj (their Bhattacharyya measure is arbi-
trarily close to 1 asn increases). In these relationsijiq des-
ignates the Hölderlq norm of the vectorj and Efij8i2ag is
the mean value ofij8i2a calculated with the Bhattacharyya
measure. Now let us take two arbitrary probability assign-
mentsP and Z from this set of measure of almost 1 that
satisfies inequalities(10) and(11). Their difference in Rényi
entropy satisfies the relation

uIasPd − IasZdu
IaMAX

=
2a

sa − 1dln n
UlnS ijsPdi2a

ijsZdi2a
DU

ø
2a

sa − 1dln n
UlnS exph«fEsiji2adgp−1j

exph− 2«fEsiji2adgp−1jDU
=

6a«

sa − 1dln n
fEsiji2adgp−1. s12d

According to Ref.[2], Esiji2ad approaches zero whenn goes
to infinity. Furthermore, the last expression is proportional to
«, which may be arbitrarily small. So what Jizba and Arim-
itsu show is that the Rényi entropies are essentially constant
on a set of measure almost 1(the casea,1 is similar). Thus
these functions would not be interesting at all. Jizba and
Arimitsu also suggest to remove the instability problem by
coarse graining the probability assignments. However, in the
counterexample given in this paper the states are already
coarse grained and this coarse graining is based on the mac-
roscopic input information. Any further coarse graining
would change the physics. At any rate, coarse graining only
substitutes a problematic pair of probability assignments(P,

P8) by a different onesP̃ ,P̃8d with IasP̃d< IasP̃8d. Of course

one can always find infinitely manyP̃8 in a d vicinity of P
that have practically the same Rényi entropy as the original
assignment. That does not solve the problem. The problem-
atic assignmentP8 still exists. The only way out seems to be
to exclude the problematicP8. However, this should not be
done in a causistic manner but by some general rule. The
counterexample given in the present paper seems to make it
difficult to find such general rule. The physicist who still
believes that Rényi entropies of thermodynamic systems can
be related to observables should give the corresponding ob-
servable explicitly, indicate how it can be measured in labo-
ratories, and describe the way it can be related to a Rényi
entropy.

Summarizing we found more evidence that indicates
that the usefulness of Rényi entropies, withaÞ1 is limited
to systems with a small numbern of states. Further we
clarified the notions of observable and state functional. This
distinction is essential to understand the whole problem.
For example, the fact that some relationships between ob-
servables show discontinuities at first-order phase transitions
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has nothing to do with the present issue. The stability of a
state functional is only a necessary condition for the exis-
tence of an associated observable. It is remarkable that
Shannon entropy does have an associated observable.
One may now, following the ideas of Ref.[1], investigate

whether other stable entropies also have corresponding ob-
servables.

It is a pleasure to thank C. Tsallis and S. Abe for bringing
my attention back to a subject that I abandoned many years
ago.
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